Facebook Instagram Youtube Twitter

Mist Flow

Mist Flow – Vertical Tubes

Mist flow is a flow regime of two-phase gas-liquid flow. It occurs at very high flow rates and very high flow quality. This condition causes the liquid film flowing on the channel wall to be thinned by the shear of the gas core on the interface until it becomes unstable and is destroyed. The flow core in the mist flow entrains all the liquid as droplets in the gas phase. Droplets may wet the tube wall, but this occurs intermittently and only locally. In the heated channel, the presence of a mist flow regime is accompanied by significantly higher wall temperatures and high fluctuation of wall temperatures.

Bubbly - Slug - Churn - Annular - Mist - Flow
Sketches of flow regimes for two-phase flow in a vertical pipe. Source: Weisman, J. Two-phase flow patterns. Chapter 15 in Handbook of Fluids in Motion, Cheremisinoff N.P., Gupta R. 1983, Ann Arbor Science Publishers.
flow patterns - vertical flow - Hewitt
The vertical flow regime map of Hewitt and Roberts (1969) for flow in a 3.2cm diameter tube, validated for both air/water flow at atmospheric pressure and steam/water flow at high pressure. Source: Brennen, C.E., Fundamentals of Multiphase Flows, Cambridge University Press, 2005, ISBN 0521 848040

Mist Flow – Horizontal Tubes

Mist flow is a flow regime of two-phase gas-liquid flow. It occurs at very high flow rates and very high flow quality. This condition causes the liquid film flowing on the channel wall to be thinned by the shear of the gas core on the interface until it becomes unstable and is destroyed. The flow core in the mist flow entrains all the liquid as droplets in the gas phase. Droplets may wet the tube wall, but this occurs intermittently and only locally. In the heated channel, the presence of a mist flow regime is accompanied by significantly higher wall temperatures and high fluctuation of wall temperatures.

bubble, plug, slug, annular, mist, stratified or wavy flow
Sketches of flow regimes for two-phase flow in a horizontal pipe. Source: Weisman, J. Two-phase flow patterns. Chapter 15 in Handbook of Fluids in Motion, Cheremisinoff N.P., Gupta R. 1983, Ann Arbor Science Publishers.
flow patterns - horizontal flow
A flow regime map for an air/water mixture flow in a horizontal, 2.5cm diameter pipe at 25◦C and 1bar. Solid lines and points are experimental observations of the transition conditions, while the hatched zones represent theoretical predictions. Source: Mandhane, J.M., Gregory, G.A. and Aziz, K.A. (1974). A flow pattern map for gas-liquid flow in horizontal pipes. Int. J. Multiphase Flow
 
References:
Reactor Physics and Thermal Hydraulics:
  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. Todreas Neil E., Kazimi Mujid S. Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, Second Edition. CRC Press; 2 edition, 2012, ISBN: 978-0415802871
  6. Zohuri B., McDaniel P. Thermodynamics in Nuclear Power Plant Systems. Springer; 2015, ISBN: 978-3-319-13419-2
  7. Moran Michal J., Shapiro Howard N. Fundamentals of Engineering Thermodynamics, Fifth Edition, John Wiley & Sons, 2006, ISBN: 978-0-470-03037-0
  8. Kleinstreuer C. Modern Fluid Dynamics. Springer, 2010, ISBN 978-1-4020-8670-0.
  9. U.S. Department of Energy, THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW. DOE Fundamentals Handbook, Volume 1, 2 and 3. June 1992.
  10. White Frank M., Fluid Mechanics, McGraw-Hill Education, 7th edition, February, 2010, ISBN: 978-0077422417

See above:

Two-phase Flow