## Convection vs Conduction

**Convection vs Conduction**

In **thermal conduction**, energy is transferred as heat either due to **the migration of free electrons **or **lattice vibrational waves (phonons).** There is no movement of mass in the direction of energy flow. Heat transfer by **conduction** is dependent upon the driving “force” of **temperature difference. **

In general, **convection** is either the **mass transfer** or the **heat transfer** due to **bulk movement** of molecules within fluids such as gases and liquids.

**Conduction** and **convection** are similar in that both mechanisms require the presence of a material medium (in comparison to thermal radiation). On the other hand they are different in that convection requires the presence of fluid motion.

It must be emphasized**, at the surface, **energy flow occurs **purely by conduction, **even in conduction. It is due to the fact, there is always a** thin stagnant fluid film layer on the heat transfer surface.** But in the next layers both conduction and diffusion-mass movement in the molecular level or macroscopic level occurs. Due to the mass movement the rate of energy transfer is higher. Higher the rate of mass movement, thinner the stagnant fluid film layer will be and higher will be the heat flow rate.

It must be noted, **nucleate boiling** at the surface effectively disrupts this stagnant layer and therefore nucleate boiling significantly increases the ability of a surface to transfer thermal energy to bulk fluid.

As was written, heat transfer through a fluid is by convection in the presence of mass movement and by conduction in the absence of it. Therefore, thermal conduction in a fluid can be viewed as the limiting case of convection, corresponding to the case of quiescent fluid.

## Convection as a Conduction with Fluid Motion

Some experts do not consider convection to be a fundamental mechanism of heat transfer since it is essentially heat conduction in the presence of fluid motion. They consider it to be a **special case of thermal conduction**, known as “**conduction with fluid motion**”. On the other hand, it is **practical** to recognize convection as a separate heat transfer mechanism despite the valid arguments to the contrary.

## What is Conduction

**Thermal conduction**, also called **heat conduction**, occurs within a body or between two **bodies in contact**without the involvement of mass flow and mixing. It is the direct microscopic exchange of kinetic energy of particles through the boundary between two systems. Heat transfer by **conduction**is dependent upon the driving “force” of** temperature difference** and the **thermal conductivity** (or the resistance to heat transfer). The thermal conductivity is dependent upon the nature and dimensions of the heat transfer medium. All heat transfer problems involve the **temperature difference**, the **geometry**, and the **physical properties**of the object being studied. In conduction heat transfer problems, the object being studied is usually a solid.

Microscopically this mode of energy transfer is attributed to **free electron flow** from higher to lower energy levels,** lattice vibration** and **molecular collision**. Consider a **block of stone** at high temperature, that consists of atoms that are oscillating intensely around their average positions. **At low temperatures**, the atoms continue to oscillate, but with **less intensity**. If a hotter block of stone is put in contact with a cooler block, the intensely oscillating atoms at the edge of the hotter block gives off its kinetic energy to the less oscillating atoms at the edge of the cool block. In this case there is **energy transfer** between these two blocks and **heat flows** from the hotter to the cooler block by this random vibrations. The modern view is to ascribe the energy transfer to lattice waves induced by atomic motion. In an electrical insulators, the energy transfer is exclusively via these lattice waves. In a conductor, it is also due to the translational motion of the free electrons.

## Fourier’s law of Thermal Conduction

**Heat transfer** processes can be quantified in terms of appropriate rate equations. The rate equation in this heat transfer mode is based on **Fourier’s law of thermal conduction**. This law states that the time **rate of heat transfer** through a material is **proportional to** the negative **gradient in the temperature** and to the area, at right angles to that gradient, through which the heat flows. Its differential form is:

## What is Convection

In general, **convection** is either the **mass transfer** or the **heat transfer** due to **bulk movement** of molecules within fluids such as gases and liquids. Although liquids and gases are generally not very good conductors of heat, they can transfer heat quite rapidly **by convection**.

**Convection** takes place through **advection**, **diffusion** or both. Convection cannot take place in most solids because neither significant diffusion of matter nor bulk current flows can take place. Diffusion of heat takes place in rigid solids, but that is called thermal conduction.

The process of heat transfer between a surface and a fluid flowing in contact with it is called **convective heat transfer**. In engineering, convective heat transfer is one of the major mechanisms of **heat transfer**. When heat is to be transferred from one fluid to another through a barrier, convection is involved on both sides of the barrier. In most cases the main resistance to heat flow is by convection. **Convective heat transfer** take place both by thermal diffusion (the random motion of fluid molecules) and by advection, in which matter or heat is transported by the larger-scale motion of currents in the fluid.

Heat transfer by **convection** is more difficult to analyze than heat transfer by conduction because no single property of the heat transfer medium, such as thermal conductivity, can be defined to describe the mechanism. **Convective heat transfer** is complicated by the fact that it involves **fluid motion as well as heat conduction**. Heat transfer by convection varies from situation to situation (upon the fluid flow conditions), and it is frequently coupled with the mode of fluid flow. In forced convection, the rate of heat transfer through a fluid is much higher by convection than it is by conduction.

## Newton’s Law of Cooling

Despite the complexity of **convection**, the rate of convection heat transfer is observed to be **proportional** to the **temperature difference** and is conveniently expressed by **Newton’s law of cooling**, which states that:

*The rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings provided the temperature difference is small and the nature of radiating surface remains same.*

Note that, **ΔT** is given by the surface or **wall temperature**, **T _{wall} **and the

**bulk temperature**,

**T**, which is the temperature of the fluid sufficiently far from the surface.

_{∞}