Facebook Instagram Youtube Twitter

EPD – Electronic Personal Dosimeter

An electronic personal dosimeter is a modern dosimeter that can give a continuous readout of cumulative dose and current dose rate and warn the person wearing it when a specified dose rate or a cumulative dose is exceeded. EPDs are especially useful in high-dose areas where the residence time of the wearer is limited due to dose constraints.

Types of EPDs

EPD - Electronic Personal Dosimeters
EPD – Electronic Personal Dosimeters with Si chip

EPDs are battery-powered, and most use either a small Geiger-Mueller (GM) tube or a semiconductor (Si chip) in which ionizing radiation releases charges resulting in measurable electric current.

  • G-M counter. A Geiger counter consists of a Geiger-Müller tube (the sensing element which detects the radiation) and the processing electronics, which displays the result. G-M counters are mainly used for portable instrumentation due to their sensitivity, simple counting circuit, and ability to detect low-level radiation. Because of the large avalanche induced by any ionization, a Geiger counter takes a long time (about 1 ms) to recover between successive pulses. Therefore, Geiger counters cannot measure high radiation rates due to the “dead time” of the tube.
  • Semiconductor Detector. Semiconductor detectors are based on ionization in a solid (e.g., silicon) and include different types of solid-state devices with two terminals called diodes. For example, a silicon diode has a p-i-n structure in which the intrinsic (i) region is sensitive to ionizing radiation, particularly X-rays and gamma rays. Under reverse bias, an electric field extends across the intrinsic or depleted region. In this case, a negative voltage is applied to the p-side and positive to the second one. Holes in the p-region are attracted from the junction towards the p contact and similarly for electrons and the n contact.
  • Scintillation Detector. Some EPDs use a scintillating crystal such as sodium iodide (NaI) or cesium iodide (CsI) with a photodiode or photomultiplier tube to measure photons released by radiation.

Characteristics of EPDs

The electronic personal dosimeter, EPD, can display a direct reading of the detected dose or dose rate in real-time. Electronic dosimeters may be used as supplemental and primary dosimeters, and passive and electronic personal dosimeters are often used to complement each other. Dosimeters must be worn on a position of the body representative of its exposure to estimate effective doses, typically between the waist and the neck, on the front of the torso, facing the radioactive source. Dosimeters are usually worn outside clothing, around the chest or torso to represent dose to the “whole body.” Dosimeters may also be worn on the extremities or near the eye to measure equivalent doses to these tissues.

The dosimeter can be reset, usually after taking a reading for record purposes, and thereby re-used multiple times. The EPDs have a top-mounted display to make them easily read when clipped to your breast pocket. The digital display gives dose and dose rate information, usually in mSv and mSv/h. The EPD has a dose rate alarm and a dose alarm. These alarms are programmable, and different alarms can be set for different activities.

For example:

  • dose rate alarm at 100 μSv/h,
  • dose alarm: 100 μSv.

If an alarm set point is reached, the relevant display flashes along with a red light, and quite a piercing noise is generated. You can clear the dose rate alarm by retreating to a lower radiation field, but you cannot clear the dose alarm until you get to an EPD reader. EPDs can also give a bleep for every 1 or 10 μSv they register, giving you an audible indication of the radiation fields. Some EPDs have wireless communication capabilities. EPDs can measure a wide radiation dose range from routine (μSv) levels to emergency levels (hundreds mSv or units of Sieverts) with high precision. They may display the exposure rate and accumulated exposure values. Of the dosimeter technologies, electronic personal dosimeters are generally the most expensive, largest in size, and the most versatile.

DMC 3000 – Mirion Technologies Inc.

The DMC 3000 is an electronic radiation dosimeter, EPD, that provides dose and ambient dose rate readings for deep dose equivalent Hp(10). It is one of the most used EPDs on the market. It uses a Si chip detector with a gamma sensitivity of 180 cps/R/h. This electronic personal dosimeter has the following characteristics:

  • Energy response (X-ray and gamma) from 15 keV to 7 MeV.
  • Dose measurement display range: between 1 μSv and 10 Sv.
  • Rate measurement display range: between 10 μSv/hr and 10 Sv/h.

The device measures 3.3 x 1.9 x 0.7 inches and has options for being clipped to a pocket, belt, or lanyard. It is powered with rechargeable or AAA batteries with a battery life of up to 2,500 hours of continuous use. Audible and visual indicators signal a low battery condition. The device has a backlit, eight-digit LCD display, two-button navigation, and visual LED, audible, and vibrating alarm indicators. Calibration is expected to last 9 months under routine use and 2 years in storage. Data is stored in nonvolatile memory. The operating range for the dosimeter is from 14°F to 122°F and up to 90 percent relative humidity. It is drop tested to 1.5 meters. The DMC 3000 has optional external modules that expand the device’s detection and communication capabilities. These include a beta module that provides Hp(0,07) for beta radiation measurement; a neutron module that provides Hp(10) neutron radiation measurement; and a telemetry module that allows transmission of data to an external station.

See also: The Radiation Dosimeters for Response and Recovery Market Survey Report. National Urban Security Technology Laboratory. SAVER-T-MSR-4. <available from: https://www.dhs.gov/sites/default/files/publications/Radiation-Dosimeters-Response-Recovery-MSR_0616-508_0.pdf>.

Advantages and Disadvantages of Electronic Personal Dosimeters

Advantages of Electronic Personal Dosimeters

  • EPDs can display a direct reading of the detected dose and dose rate in real-time.
  • EPDs have a dose rate alarm and a dose alarm, which warn the person wearing it when a specified dose rate or a cumulative dose is exceeded.
  • The dosimeter can be reset, usually after taking a reading for record purposes, and thereby re-used multiple times.
  • EPDs can measure a wide radiation dose range from routine (μSv) levels to emergency levels (hundreds mSv or units of Sieverts) with high precision.

Disadvantages of Electronic Personal Dosimeters

  • EPDs are generally the most expensive dosimeters.
  • EPDs are generally large.
  • EPDs measure and record radiation exposure due to gamma rays, X-rays, and sometimes beta particles. For neutrons, TLDs are more capable.

Radiation Dose Measuring and Monitoring

In previous chapters, we described the equivalent dose and the effective dose. But these doses are not directly measurable. For this purpose, the ICRP  has introduced and defined a set of operational quantities that can be measured and intended to provide a reasonable estimate for the protection quantities. These quantities aim to provide a conservative estimate for the value of the protection quantities related to an exposure avoiding both underestimation and too much overestimation.

Numerical links between these quantities are represented by conversion coefficients, which are defined for a reference person. An internationally agreed set of conversion coefficients must be available for general use in radiological protection practice for occupational exposures and exposures of the public. Computational phantoms are used for dose assessment in various radiation fields to calculate conversion coefficients for external exposure. Biokinetic models for radionuclides, reference physiological data, and computational phantoms are used for calculating dose coefficients from intakes of radionuclides.

A set of evaluated data of conversion coefficients for protection and operational quantities for external exposure to a mono-energetic photon, neutron, and electron radiation under specific irradiation conditions is published in reports  (ICRP, 1996b, ICRU, 1997).

Radiation Dose Monitoring - Operational QuantitiesIn general, the ICRP defines operational quantities for the area and individual monitoring of external exposures. The operational quantities for area monitoring are:

  • Ambient dose equivalent, H*(10). The ambient dose equivalent is an operational quantity for area monitoring of strongly penetrating radiation.
  • Directional dose equivalent, H’ (d, Ω). The directional dose equivalent is an operational quantity for area monitoring weakly penetrating radiation.

The operational quantities for individual monitoring are:

  • Personal dose equivalent, Hp(0.07). The Hp(0.07) dose equivalent is an operational quantity for individual monitoring to assess the dose to the skin, hands, and feet.
  • Personal dose equivalent, Hp(10). The Hp(10) dose equivalent is an operational quantity for individual monitoring to assess the effective dose.

Special Reference: ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).

Radiation Measuring and Monitoring - Quantities and Limits

Dose Limits

See also: Dose Limits

Dose limits are split into two groups, the public and occupationally exposed workers. According to ICRP, occupational exposure refers to all exposure incurred by workers in the course of their work, except for

  1. excluded exposures and exposures from exempt activities involving radiation or exempt sources
  2. any medical exposure
  3. the normal local natural background radiation.

The following table summarizes dose limits for occupationally exposed workers and the public:

dose limits - radiation
Table of dose limits for occupationally exposed workers and the public.
Source of data: ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).

According to the recommendation of the ICRP in its statement on tissue reactions of 21. April 2011, the equivalent dose limit for the eye lens for occupational exposure in planned exposure situations was reduced from 150 mSv/year to 20 mSv/year, averaged over defined periods of 5 years, with no annual dose in a single year exceeding 50 mSv.

Limits on effective dose are for the sum of the relevant, effective doses from external exposure in the specified period and the committed effective dose from intakes of radionuclides in the same period. For adults, the committed effective dose is computed for 50 years after intake, whereas for children, it is computed for the period up to age 70. The effective whole-body dose limit of 20 mSv is an average value over five years, and the real limit is 100 mSv in 5 years, with not more than 50 mSv in any year.

Sievert – Unit of Equivalent Dose

In radiation protection, a sievert is a derived unit of equivalent dose and effective dose. The sievert represents the equivalent biological effect of depositing a joule of gamma rays energy in a kilogram of human tissue. Unit of sievert is important in radiation protection and was named after the Swedish scientist Rolf Sievert, who did a lot of the early work on radiation dosimetry in radiation therapy.

As was written, the sievert is used for radiation dose quantities such as equivalent dose and effective dose. Equivalent dose (symbol HT) is a dose quantity calculated for individual organs (index T – tissue). The equivalent dose is based on the absorbed dose to an organ, adjusted to account for the effectiveness of the type of radiation. An equivalent dose is given the symbol HT. The SI unit of HT is the sievert (Sv) or but rem (roentgen equivalent man) is still commonly used (1 Sv = 100 rem).

Examples of Doses in Sieverts

We must note that radiation is all around us. In, around, and above the world we live in. It is a natural energy force that surrounds us, and it is a part of our natural world that has been here since the birth of our planet. In the following points, we try to express enormous ranges of radiation exposure, which can be obtained from various sources.

  • 0.05 µSv – Sleeping next to someone
  • 0.09 µSv – Living within 30 miles of a nuclear power plant for a year
  • 0.1 µSv – Eating one banana
  • 0.3 µSv – Living within 50 miles of a coal power plant for a year
  • 10 µSv – Average daily dose received from natural background
  • 20 µSv – Chest X-ray
  • 40 µSv – A 5-hour airplane flight
  • 600 µSv – mammogram
  • 1 000 µSv – Dose limit for individual members of the public, total effective dose per annum
  • 3 650 µSv – Average yearly dose received from natural background
  • 5 800 µSv – Chest CT scan
  • 10 000 µSv – Average yearly dose received from a natural background in Ramsar, Iran
  • 20 000 µSv – single full-body CT scan
  • 175 000 µSv – Annual dose from natural radiation on a monazite beach near Guarapari, Brazil.
  • 5 000 000 µSv – Dose that kills a human with a 50% risk within 30 days (LD50/30) if the dose is received over a very short duration.
References:

Radiation Protection:

  1. Knoll, Glenn F., Radiation Detection and Measurement 4th Edition, Wiley, 8/2010. ISBN-13: 978-0470131480.
  2. Stabin, Michael G., Radiation Protection, and Dosimetry: An Introduction to Health Physics, Springer, 10/2010. ISBN-13: 978-1441923912.
  3. Martin, James E., Physics for Radiation Protection 3rd Edition, Wiley-VCH, 4/2013. ISBN-13: 978-3527411764.
  4. U.S.NRC, NUCLEAR REACTOR CONCEPTS
  5. U.S. Department of Energy, Instrumentation, and Control. DOE Fundamentals Handbook, Volume 2 of 2. June 1992.

Nuclear and Reactor Physics:

  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.
  9. Paul Reuss, Neutron Physics. EDP Sciences, 2008. ISBN: 978-2759800414.

See above:

Radiation Dosimeter