Facebook Instagram Youtube Twitter

Thermoluminescent Dosimeter – TLD vs. Film Badge Dosimeter

TLD – Thermoluminescent Dosimeter

A thermoluminescent dosimeter, abbreviated as TLD,  is a passive radiation dosimeter that measures ionizing radiation exposure by measuring the intensity of visible light emitted from a sensitive crystal in the detector when the crystal is heated. The intensity of light emitted is measured by the TLD reader, and it is dependent upon the radiation exposure. Thermoluminescent dosimeters were invented in 1954 by Professor Farrington Daniels of the University of Wisconsin-Madison. TLD dosimeters apply to situations where real-time information is not needed, but precise accumulated dose monitoring records are desired for comparison to field measurements or assessing the potential for long-term health effects. In dosimetry, the quartz fiber and film badge types are superseded by TLDs and EPDs (Electronic Personal Dosimeter).

Advantages and Disadvantages of TLDs

Advantages of TLDs

  • TLDs can measure a greater range of doses compared to film badges.
  • Doses from TLDs may be easily obtained.
  • TLDs can be read on site instead of being sent away for development.
  • TLDs are easily reusable.

Disadvantages of TLDs

  • Each dose cannot be read out more than once.
  • The readout process effectively “zeroes” the TLD.

Film Badge Dosimeter

Film badges and film badge dosimeters are small portable devices for monitoring cumulative radiation dose due to ionizing radiation. The principle of operation is similar to X-ray pictures. The badge consists of two parts: photographic film and a holder. The film is contained inside a badge. The piece of photographic film is sensitive material, and it must be removed monthly and developed. The more radiation exposure, the more blackening of the film. The blackening of the film is linear to the dose, and doses up to about 10 Gy can be measured.

film badge dosimeter
Film Badge. Source: www.nde-ed.org

Advantages and Disadvantages of Film Dosimeters

Advantages of Film Dosimeters

  • A film badge as a personnel monitoring device is very simple, and therefore they are not expensive.
  • A film badge provides a permanent record.
  • Film badge dosimeters are very reliable.
  • A film badge measures and records radiation exposure due to gamma rays, X-rays, and beta particles.

Disadvantages of Film Dosimeters

  • Film dosimeters usually cannot be read on-site; instead, they must be sent away for development.
  • Film dosimeters are for one-time use only, and they cannot be reused.
  • Exposures of less than 0.2 mSv (20 millirems) of gamma radiation cannot be accurately measured.
References:

Radiation Protection:

  1. Knoll, Glenn F., Radiation Detection and Measurement 4th Edition, Wiley, 8/2010. ISBN-13: 978-0470131480.
  2. Stabin, Michael G., Radiation Protection, and Dosimetry: An Introduction to Health Physics, Springer, 10/2010. ISBN-13: 978-1441923912.
  3. Martin, James E., Physics for Radiation Protection 3rd Edition, Wiley-VCH, 4/2013. ISBN-13: 978-3527411764.
  4. U.S.NRC, NUCLEAR REACTOR CONCEPTS
  5. U.S. Department of Energy, Instrumentation, and Control. DOE Fundamentals Handbook, Volume 2 of 2. June 1992.

Nuclear and Reactor Physics:

  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.
  9. Paul Reuss, Neutron Physics. EDP Sciences, 2008. ISBN: 978-2759800414.

See above:

TLD