Facebook Instagram Youtube Twitter

Intermediate-level Waste – ILW


Radioactive waste is any waste that contains radioactive material. Radioactive (or nuclear) waste is a byproduct of nuclear reactors, fuel processing plants, hospitals, industrial applications, and research facilities. Radioactive waste is hazardous to most forms of life and the environment and is regulated by government agencies to protect human health and the environment.

Intermediate-level Waste

Intermediate-level waste (ILW) contains higher amounts of radioactivity and generally requires shielding. Still, the heat it generates (<2 kW/m3) is insufficient to be considered in the design or selection of storage and disposal facilities.

radioactive contaminationIntermediate-level wastes include ion-exchange resins, chemical sludge, contaminated materials from reactor decommissioning, and radioactive sources used in radiation therapy. Intermediate-level radioactive waste that requires long-term management. The owners and the producers of intermediate-level radioactive waste are responsible for managing the waste they produce. It may be solidified in concrete or bitumen for disposal. Generally, short-lived waste (mainly non-fuel materials from reactors) is buried in shallow repositories. In contrast, long-lived waste (from fuel and fuel reprocessing) is deposited in a geological repository.

Nuclear and Reactor Physics:
  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.

Advanced Reactor Physics:

  1. K. O. Ott, W. A. Bezella, Introductory Nuclear Reactor Statics, American Nuclear Society, Revised edition (1989), 1989, ISBN: 0-894-48033-2.
  2. K. O. Ott, R. J. Neuhold, Introductory Nuclear Reactor Dynamics, American Nuclear Society, 1985, ISBN: 0-894-48029-4.
  3. D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, 1993, ISBN: 0-894-48453-2. 
  4. E. E. Lewis, W. F. Miller, Computational Methods of Neutron Transport, American Nuclear Society, 1993, ISBN: 0-894-48452-4.

See above:

Radioactive Waste