What is Matter
The physical world is composed of combinations of various subatomic or fundamental particles. These are the smallest building blocks of matter. All matter except dark matter is made of molecules, which are themselves made of atoms. The atoms consist of two parts. An atomic nucleus and an electron cloud, and the electrons are spinning around the atomic nucleus. The nucleus is generally made of protons and neutrons, but these are composite objects. Inside the protons and neutrons, we find the quarks.
Quarks and electrons are some of the elementary particles. Many fundamental particles have been discovered in various experiments. So many that researchers had to organize them, just like Mendeleev did with his periodic table. This is summarized in a theoretical model (concerning the electromagnetic, weak, and strong nuclear interactions) called the Standard Model. In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown. Thus it is unknown whether it is composed of other particles. Known elementary particles include the fundamental fermions and the fundamental bosons.
Matter vs. Antimatter
What is Antimatter
Antimatter refers to material that would be made up of “antiatoms” in which antiprotons and antineutrons would form the nucleus around which positrons (antielectrons) would move. The term is also used for antiparticles in general.
Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron and an antiproton can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible and anti-atoms corresponding to the known chemical elements.
Our visible Universe is almost entirely composed of matter, and very little antimatter has existed since the Big Bang. This problem is known as the baryon asymmetry. This asymmetry of matter and antimatter in the visible Universe is one of the great unsolved problems in physics.
Particles and Antiparticles
Quarks and electrons are some of the elementary particles. Many fundamental particles have been discovered in various experiments. So many that researchers had to organize them, just like Mendeleev did with his periodic table. This is summarized in a theoretical model (concerning the electromagnetic, weak, and strong nuclear interactions) called the Standard Model. In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown. Thus it is unknown whether it is composed of other particles.
There is an associated antiparticle in particle physics, corresponding to most kinds of particles. An antiparticle has the same mass and opposite charge (including an electric charge).
For example, there is a corresponding type of antiparticle for every quark. The antiquarks have the same mass, mean lifetime, and spin as their respective quarks, but the electric charge and other charges have the opposite sign.
The original idea for antiparticles came from a relativistic wave equation developed in 1928 by the English scientist P. A. M. Dirac (1902-1984). He realized that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. Paul Dirac and Carl D. Anderson discovered these in 1932 and named positrons. They studied cosmic-ray collisions via a cloud chamber – a particle detector in which moving electrons (or positrons) leave behind trails as they move through the gas. Positron paths in a cloud chamber trace the same helical path as an electron but rotate in the opposite direction for the magnetic field. They have the same magnitude of charge-to-mass ratio but with opposite charge and, therefore, opposite signed charge-to-mass ratios. Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc.
It was predicted that other particles also would have antiparticles. In 1955 the antiparticle to the proton, the antiproton, which carries a negative charge, was discovered at the University of California, Berkeley. Since then, the antiparticles of many other subatomic particles have been created in particle accelerator experiments. On the other hand, a few, like the photon and π0, do not have distinct antiparticles. These particles are their own antiparticles.
Neutrino vs. Antineutrino
A neutrino is an elementary subatomic particle with infinitesimal mass (less than 0.3 eV..?) and no electric charge. Neutrinos belong to the family of leptons, which means they do not interact via strong nuclear force. Neutrinos are weakly interacting subatomic particles with ½ units of spin. The term neutrino comes from Italian, meaning “little neutral one,” and neutrinos are denoted by the Greek letter ν (nu). There are three types of charged leptons, each associated with neutrino, forming three generations (between generations, particles differ by their quantum number and mass). The first generation consists of the electron (e−) and electron-neutrino (νe). The second-generation consist of the muon (μ−) and muon neutrino (νμ) The third generation consist of the tau (τ−) and the tau neutrino (ντ). Each type of neutrino is associated with an antimatter particle, called an antineutrino, which also has a neutral electric charge and 1/2 spin. Currently (2015), it is not resolved whether the neutrino and its antiparticle are not identical particles.
Antineutrinos are produced in the negative beta decay. A nuclear reactor occurs especially the β−decay because the common feature of the fission products is an excess of neutrons (see Nuclear Stability). An unstable fission fragment with the excess of neutrons undergoes β− decay, where the neutron is converted into a proton, an electron, and an electron antineutrino. Therefore each nuclear reactor is a very powerful source of antineutrinos, and researchers worldwide investigate the possibilities of using antineutrinos for reactor monitoring.
On the other hand, the most powerful source of neutrinos in the solar system is doubtless the Sun itself. Billions of solar neutrinos per second pass (mostly without any interaction) through every square centimeter (~6 x 1010 cm-2s-1) on the Earth’s surface. In the Sun, neutrinos are produced after the fusion reaction of two protons during positive beta decay of helium-2 nucleus.
Matter and Antimatter – Laws of Conservation in Nuclear Reactions
In analyzing nuclear reactions, we apply the many conservation laws. Nuclear reactions are subject to classical conservation laws for a charge, momentum, angular momentum, and energy (including rest energies). Additional conservation laws not anticipated by classical physics are electric charge, lepton number, and baryon number. Certain of these laws are obeyed under all circumstances, and others are not.
At this point, we describe especially the relationship between antimatter and the following laws of conservation:
Law of Conservation of Lepton Number
In particle physics, the lepton number denotes which particles are leptons and which particles are not. Each lepton has a lepton number of 1, and each antilepton has a lepton number of -1. Other non-leptonic particles have a lepton number of 0. The lepton number is a conserved quantum number in all particle reactions. A slight asymmetry in the laws of physics allowed leptons to be created in the Big Bang.
The conservation of lepton number means that whenever a lepton of a certain generation is created or destroyed in a reaction, a corresponding antilepton from the same generation must be created or destroyed. It must be added there is a separate requirement for each of the three generations of leptons, the electron, muon, and tau, and their associated neutrinos.
Consider the decay of the neutron. The reaction involves only first-generation leptons: electrons and neutrinos:
Since the lepton number must be equal to zero on both sides and it was found that the reaction is a three-particle decay (the electrons emitted in beta decay have a continuous rather than a discrete spectrum), the third particle must be an electron antineutrino.
Law of Conservation of Baryon Number
In particle physics, the baryon number denotes which particles are baryons and which particles are not. Each baryon has a baryon number of 1, and each antibaryon has a baryon number of -1. Other non-baryonic particles have a baryon number of 0. Since there are exotic hadrons like pentaquarks and tetraquarks, there is a general definition of baryon number as:
where nq is the number of quarks, and nq is the number of antiquarks.
The baryon number is a conserved quantum number in all particle reactions.
The law of conservation of baryon number states that:
The sum of the baryon number of all incoming particles is the same as the sum of the baryon numbers of all particles resulting from the reaction.
For example, the following reaction has never been observed:
even if the incoming proton has sufficient energy and charge, energy, and so on, are conserved. This reaction does not conserve the baryon number since the left side has B =+2, and the right has B =+1.
On the other hand, the following reaction (proton-antiproton pair production) does conserve B and does occur if the incoming proton has sufficient energy (the threshold energy = 5.6 GeV):
As indicated, B = +2 on both sides of this equation.
From these and other reactions, the conservation of the baryon number has been established as a basic principle of physics.
This principle provides the basis for the stability of the proton. Since the proton is the lightest particle among all baryons, the hypothetical products of its decay would have to be non-baryons. Thus, the decay would violate the conservation of the baryon number. It must be added some theories have suggested that protons are, in fact, unstable with a very long half-life (~1030 years) and that they decay into leptons. There is currently no experimental evidence that proton decay occurs.
Law of Conservation of Electric Charge
The law of conservation of electric charge can also be demonstrated on positron-electron pair production. Since a gamma-ray is electrically neutral and sum of the electric charges of electron and positron is also zero, the electric charge in this reaction is also conserved.
Ɣ → e– + e+
It must be added for electron-positron pair production to occur. The electromagnetic energy of the photon must be above threshold energy, which is equivalent to the rest mass of two electrons. The threshold energy (the total rest mass of produced particles) for electron-positron pair production equals 1.02MeV (2 x 0.511MeV) because the rest mass of a single electron is equivalent to 0.511MeV of energy. If the original photon’s energy is greater than 1.02MeV, any energy above 1.02MeV is, according to the conservation law, split between the kinetic energy of motion of the two particles. The presence of an electric field of a heavy atom such as lead or uranium is essential to satisfy the conservation of momentum and energy. The atomic nucleus must receive some momentum to satisfy both conservations of momentum and energy. Therefore a photon pair production in free space cannot occur.