## Tennessine – Melting Point and Boiling Point

Melting point of Tennessine is –°C.

Boiling point of Tennessine is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Tennessine – Properties

Element Tennessine
Atomic Number 117
Symbol Ts
Element Category Post-Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 294
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 7p5 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery NA
Discoverer Yet to be produced
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Oganesson – Melting Point and Boiling Point

Melting point of Oganesson is –°C.

Boiling point of Oganesson is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Oganesson – Properties

Element Oganesson
Atomic Number 118
Symbol Og
Element Category
Phase at STP Synthetic
Atomic Mass [amu] 294
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 7p6 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 2006
Discoverer Y. T. Oganessian et. al.
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Moscovium – Melting Point and Boiling Point

Melting point of Moscovium is –°C.

Boiling point of Moscovium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Moscovium – Properties

Element Moscovium
Atomic Number 115
Symbol Mc
Element Category Post-Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 290
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 7p3 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 2004
Discoverer Y. T. Oganessian et. al.
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Livermorium – Melting Point and Boiling Point

Melting point of Livermorium is –°C.

Boiling point of Livermorium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Livermorium – Properties

Element Livermorium
Atomic Number 116
Symbol Lv
Element Category Post-Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 292
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 7p4 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 2001
Discoverer Scientists at Dubna, Russia
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Nihonium – Melting Point and Boiling Point

Melting point of Nihonium is –°C.

Boiling point of Nihonium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Nihonium – Properties

Element Nihonium
Atomic Number 113
Symbol Nh
Element Category Post-Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 286
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 7p1 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 2004
Discoverer Y. T. Oganessian et. al.
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Flerovium – Melting Point and Boiling Point

Melting point of Flerovium is –°C.

Boiling point of Flerovium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Flerovium – Properties

Element Flerovium
Atomic Number 114
Symbol Fl
Element Category Post-Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 289
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 7p2 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 1998
Discoverer Scientists at Dubna, Russia
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Roentgenium – Melting Point and Boiling Point

Melting point of Roentgenium is –°C.

Boiling point of Roentgenium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Roentgenium – Properties

Element Roentgenium
Atomic Number 111
Symbol Rg
Element Category Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 272
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d9 7s2 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 1994
Discoverer Hofmann, Sigurd et. al.
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Copernicium – Melting Point and Boiling Point

Melting point of Copernicium is –°C.

Boiling point of Copernicium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Copernicium – Properties

Element Copernicium
Atomic Number 112
Symbol Cn
Element Category Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 285
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d10 7s2 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 1996
Discoverer Armbruster, Paula & Muenzenberg, Dr. Gottfried
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Meitnerium – Melting Point and Boiling Point

Melting point of Meitnerium is –°C.

Boiling point of Meitnerium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

## Meitnerium – Properties

Element Meitnerium
Atomic Number 109
Symbol Mt
Element Category Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 268
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d7 7s2 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 1982
Discoverer Armbruster, Paula & Muenzenberg, Dr. Gottfried
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]

## Darmstadtium – Melting Point and Boiling Point

Melting point of Darmstadtium is –°C.

Boiling point of Darmstadtium is –°C.

Note that these points are associated with the standard atmospheric pressure.

Boiling Point – Saturation

In thermodynamics, saturation defines a condition in which a mixture of vapor and liquid can exist together at a given temperature and pressure. The temperature at which vaporization (boiling) starts to occur for a given pressure is called the saturation temperature or boiling point. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is called the condensation point.

Melting Point

In thermodynamics, the melting point defines a condition where the solid and liquid can exist in equilibrium. Adding heat will convert the solid into a liquid with no temperature change. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is called the freezing point or crystallization point.

The first theory explaining the mechanism of melting in bulk was proposed by Lindemann, who used the vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point, the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them, and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

### Boiling Point of Elements in the Periodic Table

Atomic Number 110
Symbol Ds
Element Category Transition Metal
Phase at STP Synthetic
Atomic Mass [amu] 281
Density at STP [g/cm3]
Electron Configuration [Rn] 5f14 6d8 7s2 ?
Possible Oxidation States
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]
1st Ionization Energy [eV]
Year of Discovery 1994
Discoverer Armbruster, Paula & Muenzenberg, Dr. Gottfried
Thermal properties
Melting Point [Celsius scale]
Boiling Point [Celsius scale]
Thermal Conductivity [W/m K]
Specific Heat [J/g K]
Heat of Fusion [kJ/mol]
Heat of Vaporization [kJ/mol]